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problem Statement

This research is based on the model developed by Howard Baum and Bernard McCaffrey [1]. As a first stcp, a consistent
set of characteristic scales are chosen to nondimensionalize all physical parameters and variables. The greatest advantage
‘ obtained by the following choice of nondimensionalization is that, once one has solved for the flow field induced by a single
! fire, the field produced by a series of fires is given by physically scaling each fire and then vectoriaily adding all the influences
at a point. The nominal heat release, Q,, the ambient density, p,, the ambient temperature, To, the specific heat, c,,. and the
acceleration of gravity, g, are used to determine characteristic quantities, which are subscripted with a*“c”. The expressions for
the characteristic length, L, velocity, U, vorticity, w, potential, <, and Stokes stream function, ¥, are given in Eq. (1). All the
subsequent nondimensional quantities - supersc:ipted with an asterick - are obtained by dividing the dimensional quantity by
the characteristic quantity.
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The detailed fluid mechanics are approached by using the technique of flow field decomposition [1]. The nondimensional
flow field, u*, is described in axisymmetric cylindrical coordinates (see Fig. 1) by the summation of an irrotational expansion
velocity, w*, govemned by a potential, ®*(r" z"), and a vorticity driven solenoidal velocity, v*, described by a stream function,
w*(r*,z"), as shown in Egs. (2 and 3).
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This technique incorporates the time-averaged, empirically determined Gaussian profiles {2] for vertical velocity, u,, and
temperature, T,
U r 2 (T- To o T 2
u, = m(l)exp{'(R—(-ﬁ) }. —T = (Z)BXP{‘(m') }. (4)

]

R(z) is the 1/e width of the Gaussian profile. A is the ratio of the thermal to the momentum width. U (z) and ©(z) are the
averaged empirical centerline values which have the form U,(z*) = A(z*)" and ©(z*) = B(z*)™!. A, B, and n depend on the
vertical flame region. For completeness, a fit for the width, R¢*(z*) = C + D(z*)>(:-295 based on the results of Eq. (10) is
included.

TABLE L. Plume Correlation Parameters

Region Range n A B C D

Flame O<z*<1.32 12 2.18 291 0 0417
Intermittent 1.32<z*<3.3 0 245 3.81 0.255 0.137

Plume z*>3.3 -1/3 3.64 841 0.136 0.121




McCaffrey’s data [2] suggests that A = 0.75'2 = 0.866 is acceptable. This value is used in this analysis to permit compari-
sons with Ref. [1]. The time averaged convective energy flux H(z) is defined and expressed in terms of the parameters in Egs.
(4)as

H(z) =2xc J'pu (T-Ty)rdr = 2mc,@(2) U, (z)J'pexp{ ()\.R( )) (1 +A%) }rdr. (5)
4}

Using the equation of state pT = p, T, and the second of Egs. (4) to eliminate p in Eq. (5) gives
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H(z) = 21tcpp T,@((z) U, (z)J.exp{ (R ) } ! 2 {rdr. 6)
@ 1+© (z)exp {- (m(z)) }
Defining ik(G*(z')) as the integral in Eq. (6) and applying the transformations
t= e-(r’R)z. rdr = —%Rze("mzdt, @)
yields
y 1
1 .
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Defining I,(®"(z")) as the integral in Eq. (8) and inserting Eq. (8) into Eq. (6) yields the convective energy flux H(z). By using
the characteristic lengths in Egs. (1), one obtains an H'(z") that is nondimensionalized on Q,.
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H (@) = 5~ = ——— [1-5(@'(:))}”%(2)11Z(Z)U—Il«a (z))} ©)

In the plume region, H(z" = (1-7),i.e., aconstant, where  is the fraction of the heat that is radiated away. There Eq. (9)
can be solved for R*(z"),

RG) = | (10)
rUL () [1-1,(@° (z'))]

Baum and McCaffrey (1] show that this expression for R’ (z ) holds throughout the intermittent and plume reglons For the
conunuous flame region, the width is nearly constant, R (z )~ R0 (1.32) =0.417. Figure 2 shows [,(® (z )X R ), and the
fit for R*(z") from Table L. I, is numerically determined using the Romberg quadrature routine gromb detailed in Ref. [3] for A
= 0.866. The accuracy of this technique is verified by calculatmg I, for A = 1 and comparing with the exact logarithmic
answer. For z* > 20, asymptotic expressmns forI; and R’may be used. Throughout the text, all asymptotic quantities are sub-
scripted with an “a”. Assuming ©° << 1inEq. (8) gives

. B .« -
L.(@)) = N (1
L+ 1/A
which yields from Eq. (10),
. . (1-x) U+ 1/2%) .
R . (z) = \/——ﬂ_B—_z . (12)

—298 —



P

oy e —

e

A —n o e e

L ———— o e i i e e

Forx = 0.35, R;(z') = 0.13z* which verifies that the plume produced by a fire of finite volume approaches the point source
plume in the large z* limit. R,"(z") should be used for z* > 20. Thus, Egs. (4, 10, and 12) and Table I define the empirical ver-
tical velocity and temperature fields. To obtain the radial velocities, the following analyses are made.

Potential for Expansion Velocity
The expansion field is determined by solving a Poisson equation for ®" [1],

,a‘b* 2 * * * £
la(r—)+ a,d? =Q (r,z). (13)

o Lot ) ot

A Gaussian heat release, Q'(r',z'), is the assumed forcing function which is normalized such that

J.-”‘Q* (r*,Z*)r*dr*dd)dz* = 1. 14)
D00

The r" -dependency of the Gaussian is weighted by the plume width RO'(1.32) =0.417, i.e., at the top of the continuous flame
zon. Forz' > 1.32, Q'(r',z') decays rapidly in the z*-direction as shown in Eq. (15).

1 - 2
e >76r z <132
2
e . . "R, [1.32+0.5ﬁ]
Q.2 = 1 gt ged . (15)
Py € ) z >132
™R, L1.32+o.5ﬁj]

This not only helps to mimic the time-averaged behavior of the intermittent flame zone but also aids in the numerical compu-
tation of a smooth ®*(r*,z"). Figure 3 shows Q* for a single fire throughout the computational domain, 0 <r*<10,0<z* <
20. The boundary condition along the centerline displays the symmetry of the potential in cylindrical coordinates and the one
on the r*-axis does not allow flow to cross it.

a¢* (O,Z‘) ™ *® ® *
=0 ¢ (10,z ) =& (10,z )
dr y
. 16
a¢‘ (l' ,0) - * = ™ ( )
—— =0 ¢ (r ,20) =& (r,h20)
0z :

The boundary conditions subscripted by an “a” refer to the asymptotic value of ®" which is simply the Green’s function for a
point source,

(1-%)

=-
27{!\,/1"2'"2‘—

For all calculations shown here x = 0.35. This asymptotic potential also supplies the expansion velocity field for r* > 10 and
z*¥> 20

-

¢: (r.z)=- (17

The solution to Egs. (13 - 17) is shown in Fig. 4. The orientation of the surface is chosen in order to accentuate the most
important features. < is calculated using the separable elliptic Rayleigh-Ritz-Galerkin two dimensional partial differential
equation solver SERRG2 from the TOMS library [4, 5). Forty six-point splines where used in the r"-direction. Fifty were used
in the z"-direction. For consistency, this result was checked against those obtained from the centered finite difference solver
HWSCYL and the staggered finite difference package HSTCYL, both from FISHPACK. For the FISHPACK solutions of ®,*

: o ) . AR ij
Ar® = Az" = 5/64 were used. The resulting velocities in the axial, w,"(r",z"), and radial, w,"(r" 2"), directions are shown in



Figs. 5 a and 5 b, respectively. These velocities are small compared with the vorticity induced velocities. The numerical tech-
niques used to compute the velocity from the potential will be discussed in a later section.

Stokes Stream Function for the Vorticity Induced Velocity

The stream function is determined by solving a different Poisson equation,

* \y* 2 L 3 * * * *
,i‘(_l;a‘ )+ J ¥ = —r m¢(r ,Z ), (18)
or \r or 32*2

which has the vorticity m{(r'.z') as its inhomogeneity. The empirically determined profiles based on the centerline tempera-
ture, @"(z"), and vertical velocity, Uy, *(z*), are employed to determine o, by taking the curl of the veiocity obtained from this
Gaussian model.
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(n¢ (r,z) = —:3—'——e

R (z)

(19)

The surface defined by this forcing function is shown in Fig 6. The boundary conditions for ¥" at the centerline and ground
level mas e these axes streamlines, i.e., no flow may cross them. The other two, as with the potential, are based on the appro-
priate asymptotic behavior of ¥,

¥ (0.z)=¥(,0) =0
- - - « . w . (20)
¥ (10,27) =¥ (10,2 ):¥ (+7,20) =¥, (r,20).

The form of the asymptotic stream function, ‘P._', is quite complex. It is convenien: to first convert to a polar coordinate sys-
tem (&, ),

E
E:«)r‘zd—z"z. ] mn-l(r—)-

zt
. e Q1)
L = cosH, X = *5_
In order to determine the asymptotic stream function from Eq. (18), the vorticity is replaced by its asymptotic value,
o) (1,2) ~E R (0)as ().
3nAB 1
2 —{1-= 22)
6nAB 7(1-1x) 2
7(1=-x) k"1
The form of the asymptotic strearn function ¥, [1]is
¥:('.z') = PG, (23)

Equations (21 - 23) are substituted into the Eqgs. (18 - 20) to obtain a forced hypergeometric equation in G and x with homoge-
nous boundary conditions,

4G 10

ﬁ*é?(_l-—x)c = 4Q(x). G (0.5) = 0. G(1) = 0. (24)

The solution for G(x), shown in Fig. 7, was obtained via numerically integrating Eq. (24) using the collocation boundary value
problem solver COLNEW from ODE in the network library. Results were checked against those obtained by using the finite
difference boundary value problem algorithmns listed in Ref. {6]. ¥ can now be determined numerically using the fourth order
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FISHPACK routine SEPX4. The consistency is checked by calculating W¥* using the fourth order FISHPACK routine SEPELI
As for <Dij', Ar = Az = 5/64 were used as the step sizes. The surface ¥'(r" z") is given in Fig. 8 a Quantitative streamlines,
shown in Fig. 8 b, display the expected inflow towards the fire near the ground level and the subsequent strong flow up into the
plume. The axial, vz'(r‘.z'), and radial, v,'(r',z'), vorticity-induced velocity components are shown in Figs. 9 aand 9 b,
respectively. The numerical procedure used to determine them is discussed below.

Single Fire Composite Velocity Field

The single fire velocity field, u’, consists of a solenoidal component, v", and an irrotational component, w", such that

u = view (25)

In order to determine the racial velocity ur' and the axial velocity uz', appropriate derivatives of the potential and stream func-
tion are taken and summed, as indicated in Eqs. (2 and 3), to give the complete flow field for a single fire. In practice, since
ool j' and ‘Pij' are discrete numerically determined approximations, a five-point finite difference scheme {6] is used to obtain the
derivatives. The forward schemes, Eqgs. (26 and 27), are used to determine the derivatives for small i or j. The backward
schemes, used for large i or j, may be obtained by changing all the pluses in the indices to minuses and by taking the negative
of Ar® and Az". Polynomial extrapolation [3] is used to determine the vorticity component of uz‘ at r* = 0. The composite
velocity u is then known within the computational gnd.

* *

e . _25¢1.;+48¢.+1,,‘"36¢|+2,j+16¢1+3,J-3¢|+4,J
ur(r,,zj) = -
12Ar
* * * * * (26)
B —25‘{-‘i‘J +48‘!’l_JH —36‘P‘_j+2+ 16‘?1‘”3— 3‘*‘..”4
o 1242
-
b 3 * = *x x
e . —25n1>l']+48<1>|.14‘1 —36¢|,j+2+ 16¢|,j+3— 34",1*4
u(r,z) = — - il
12Az
* *® * * £ (27)
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r 12Ar i

Fig. 10 a shows the vorticity, v, , the expansion, w, . the composite, u, , and the empirical, Uy, . velocities along the cen-
terline. The agreement t tween the numerical composite and the empirical fit from Table I is excellent. The ground level vor-
ticity, v, . expansion, w,‘, and composite, u, , velocities are shown in Fig 10 b. These two comparisons agree well with Figs.
3 and 4, respectively, of Ref. [1].

Figure 11 shows the final result of this analysis. The surface for the dimensionless total axial velocity for a single fire, u,
is shown in Fig 11 a. The axial velocity peaks on the centerline in the intermittent flame region and decays from the maximum
slowly in z* and rapidly in r*. The surface for the dimensionless total radial velocity for a single fire, u,'(r'.z'), is shown in
Fig 14 c. This surface is more complex because the maxima for the expansion and solenoidal fields are of the same order but
are of different signs. The larges: radial velocities are near the fire and are directed towards it, as expected.
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